Computing singular points of plane rational curves

نویسندگان

  • Falai Chen
  • Wenping Wang
  • Yang Liu
چکیده

We compute the singular points of a plane rational curve, parametrically given, using the implicitization matrix derived from the μ-basis of the curve. It is shown that singularity factors, which are defined and uniquely determined by the elementary divisors of the implicitization matrix, contain all the information about the singular points, such as the parameter values of the singular points and their multiplicities. Based on this observation, an efficient and numerically stable algorithm for computing the singular points is devised, and inversion formulae for the singular points are derived. In particular, high order singular points can be detected and computed effectively. This approach based on singularity factors can also determine whether a rational curve has any non-ordinary singular points that contain singular points in its infinitely near neighborhood. Furthermore, a method is proposed to determine whether a singular point is ordinary or not. Finally, a conjecture in [Chionh, E.-W., Sederberg, T.W., 2001. On the minors of the implicitization bézout matrix for a rational plane curve. Computer Aided Geometric Design 18, 21–36] regarding the multiplicity of the singular points of a plane rational curve is proved. c © 2007 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Plane Maximal Curves

We are interested in non-singular plane curves whose number of rational points attains the Hasse-Weil upper bound. Dedicated with affection to J.W.P. Hirschfeld and G. Korchmáros

متن کامل

Symbolic Parametrization of Curves

If algebraic varieties like curves or surfaces are to be manipulated by computers, it is essential to be able to represent these geometric objects in an appropriate way. For some applications an implicit representation by algebraic equations is desirable, whereas for others an explicit or parametric representation is more suitable. Therefore, transformation algorithms from one representation to...

متن کامل

Chapter 2: Operations on Polynomial Curves and Surfaces

1 Plane Curves 2 1.1 Computation of Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.1.1 Expansion at Simple Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.1.2 Expansion at Singular Points . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.1.3 Newton Factorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.1.4 Local...

متن کامل

Counting Nodes on Rational Plane Curves

In this paper, we consider polynomial parametrized curves in the affine plane k over an algebraically closed field k. Such curves are given by κ : k → k : t 7→ (x(t), y(t)), and may or may not contain singular points. The problem of how many singular points there are is of specific importance to the theory of polynomial knots, as it gives a bound on the degrees necessary to achieve a parametriz...

متن کامل

List of Problems

(a) Find Galois points and the Galois groups for singular plane curves. – for smooth curves, the number of Galois points is at most three (resp. four) if they are outer (resp. inner). The Galois groups are cyclic. [46, 62] – (i) How is the structure of Galois group and how many Galois points do there exist? Is it true that the maximal number of outer (resp. inner) Galois points is three (resp. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Symb. Comput.

دوره 43  شماره 

صفحات  -

تاریخ انتشار 2008